
Hierarchically Partitioned Implicit Surfaces
For Interpolating Large Point Set Models

Abstract. We present a novel hierarchical spatial partitioning method for creat-
ing interpolating implicit surfaces using compactly supported radial basis func-
tions (RBFs) from scattered surface data. From this hierarchy of functions we can
create a range of models from coarse to fine, where a coarse model approximates
and a fine model interpolates. Furthermore, our method elegantly handles irregu-
larly sampled data and hole filling because of its multiresolutional approach. Like
related methods, we combine neighboring patches without surface discontinuities
by overlapping their embedding functions. However, unlike partition-of-unity ap-
proaches we do not require an additional explicit blending function to combine
patches. Rather, we take advantage of the compact extent of the basis functions to
directly solve for each patch’s embedding function in a way that does not cause
error in neighboring patches. Avoiding overlap error is accomplished by adding
phantom constraints to each patch at locations where a neighboring patch has
regular constraints within the area of overlap (the function’s radius of support).
Phantom constraints are also used to ensure the correct results between differ-
ent levels of the hierarchy. This approach leads to efficient evaluation because
we can combine the relevant embedding functions at each point through simple
summation. We demonstrate our method on a several very large models includ-
ing the Thai statue from the Stanford 3D Scanning Repository. Using hierarchical
compactly supported RBFs we interpolate all 5 million vertices of the model.

1 Introduction

A common problem in computer graphics is interpolating a large set of points on or
near a surface to produce a smooth surface. These points may originate as unorganized
point sets such as from a 3-D scanning system. They may also come in organized or
semiorganized sets from the vertices of polygonal models, which once interpolated can
provide a smoother surface than the polygonal one and can be converted to other rep-
resentations, including a more finely polygonalized one if desired. Such point sets may
also come from computer vision analysis of an image or set of images or from interac-
tive modeling tools.

Biological and medical applications represent an important area where such data ex-
ist and the smooth reconstruction of surface models resolve specific critical needs. Most
biological objects can be assumed to be smooth but often with complex topology. Sur-
face representations in medicine and biology should be manifolds, are often closed, and



should be orientable surfaces with a clear indication of inside and outside. In these re-
spects, implicit surfaces have significant advantages over polygonal meshes and spline
patches. Medical applications in particular often involve very large, detailed models and
require exact interpolations; the difference between a thin piece of obstructing bone and
no bone can be a crucial distinction during a clinical procedure. Additionally, the use
of implicit surfaces or any surface model can help create more compact data represen-
tations than the existing voxel-based models in medicine.

Fig. 1. A simple two-level hierarchy of the Stan-
ford bunny. The constraints of the root RBF are
dark blue and slightly larger, and each child parti-
tion is indicated in different colors.

A number of techniques have
emerged for converting such point
sets to implicit models that in-
terpolate (or approximate) these
points [1–18]. Broadly, we call
these interpolating implicit sur-
faces.1 These methods take the
same general approach: known
points on the surface define where
the implicit surface’s embedding
function should have a value of
0; known off-surface points, sur-
face normals (either known or
fitted), or other assumptions de-
fine where the embedding func-
tion has nonzero values; and the
embedding function is then inter-
polated using scattered data in-
terpolation techniques such as ra-
dial basis functions (RBFs) [1–3,
5–9, 12], (implicit) moving least
squares [17], or partition-of-unity
blending of local fitting using
these or other interpolation methods [10, 13–15]. Though they differ in various ways
(the interpolation methods used, the means of defining the non-surface constraints, and
the tolerance of fitting the points), they all share this key idea: rather than explicitly in-
terpolating the surface, they interpolate the embedding function implicitly defining the
surface.

Many implementations of this idea [1, 3, 8] use thin-plate spline RBFs [19] so as to
produce the smoothest interpolation possible. However, the direct formulation of this
requires the solving of a large, full, generally ill-conditioned system of equations and
quickly becomes computationally impractical for large models. Implementations using
other RBFs with infinite support [7, 9, for example] have similar limitations. Various
methods have been used to accelerate RBF approaches, including using compactly sup-
ported RBF surfaces such as those in [20] to make the required system sparse [5, 11,
12, 16, 21, 22] or approximating a large set of constraints by a well-selected subset [4,

1 These have also been known in the literature as variational implicit surfaces, implicit surfaces
that interpolate, and constraint-based implicit surfaces by various authors.



6]. Others accelerate the surface fitting by subdividing the surface into smaller patches,
fitting a surface (or the embedding function for that surface) to each patch, then com-
bining the patches through blending [10, 13–15, 17].

In this paper, we present a novel method for efficiently creating RBF-based implicit
representations from the vertices of a polygonal model using hierarchical spatial par-
titioning as illustrated in Figure 1. Because the resulting surface interpolates the data
(to within numerical limits), it is suitable for medical or other high-precision appli-
cations. Unlike other approaches that combine local interpolations through compactly
supported blending functions, no explicit blending function is required—each level and
partitioned patch is calculated so that a simple linear combination of them produces an
exact interpolation. We demonstration the interpolation of multi-million point models.

2 Related Work and Background

Many techniques have been proposed for organizing point sets into surfaces. Some of
these attempt to organize the points into polygonal models [23, 24, and many others].
Others use moving least squares (MLS), defining the surface as fixed points of a nonlin-
ear projection [25–28]. As our goal is to create implicit models, we focus most closely
here on such techniques.

Our implementation of compactly-supported RBFs follows most closely that de-
tailed in [5]. This method is based on the general approach of Turk et al. [2, 3, 8], which
is itself similar to a method first proposed by Savchenko et al. [1].

The basic method begins with a set of points known to lie on the desired implicit
surface and constrains the interpolated embedding function to have a value of 0 at these
points. Using the method of [8], non-zero constraints (often called “normal constraints”)
are placed at a fixed offset in the direction of the known or desired normals at these
surface points. This produces a set of constraints P = {(ci,hi)} such that hi = 0 for all
ci on the surface and hi = 1 for all ci at a fixed offset from that surface. An embedding
function f (x) is then interpolated from these constraints such that f (ci) = hi.

This interpolation is done using an RBF φ(r) by defining the embedding function f
as a weighted sum of these basis functions centered at each of the constraints:

f (x) = ∑
(ci,hi)∈P

di φ(‖x− ci‖) (1)

where di is the weight of the radial basis function positioned at ci.2 To solve for the set
of weights di that satisfy the known constraints f (ci) = hi, substitute each constraint
(ci,hi) into Eq. 1:

∀ci : f (ci) = ∑
(c j ,h j)∈P

d jφ(‖ci− c j‖) = hi (2)

This basic method has been used in graphics for surface fitting from scanned data,
interactive shape modeling, and shape interpolation. They have also been applied in
computer vision, including using anisotropic basis functions to approximate and smooth

2 For some RBFs, including the thin-plate spline RBFs, an additional polynomial may also be
required.



volumetric representations from 3-D reconstruction algorithms [7, 9], and for represent-
ing topology-adaptive active contours [29].

Carr et al. [6] extend this technique to large models by using a selectively chosen
subset of the model’s points so that interpolating the subset approximates the overall
model within a specified tolerance. This technique relies on fast evaluation of the em-
bedding function, made possible using fast multipole methods [30]. They also improve
the method by adjusting the displacement of the normal constraints to avoid interpene-
trating surfaces.

By using compactly supported RBFs, such as those proposed by Wendland [20], one
can make this system of equations sparse [5, 11]. By efficiently organizing the points
spatially, one can also reduce the time required to compute the system itself. Results
presented in [5] show that complexity on the order of O(n1.2–1.5) may result, depending
on the sparseness of the matrix. As the size of the model increases, one can commen-
surately reduce the radius of support for the RBFs, thus increasing efficiency while
keeping the data density approximately constant. (This method is also similar to that
proposed earlier by Muraki’s “Blobby Model” [22].)

The primary drawback to using compactly supported radial basis functions alone
for surface modeling is that the embedding function is 0 outside one radius of support
from the surface. This does not preclude polygonalization, ray-tracing, or many other
uses of the surface because it is relatively easy to separate zero sets that result from
lack of support. However, it does limit their use for CSG and other operations for which
implicit surfaces are useful. The compact support also causes them to fail in areas with
low data density, in the limit failing where the surface has holes larger than the support.
(See [12] for an excellent discussion of the limitations of compactly supported RBFs
for surface modeling, with additional empirical analysis in [21].) These limitations can
be overcome using hierarchical, or multilevel, approaches, such as [31, 32] for scatter
data interpolation, and [12, 16] for compactly supported RBFs.

Another way to accelerate the surface fitting is to spatially subdivide the surface
points into separate patches, then interpolate (or approximate) each patch and blend the
results using partition-of-unity blending. By blending local approximations instead of
directly trying to fit the entire model at once, this method provides efficient processing
for very large models. Wendland [10] first proposed combining RBF interpolation of
“mildly overlapping” domains with partition-of-unity blending of the resulting local in-
terpolations to produce a global solution. Ohtake et al. [13] applied this idea to implicit
surface fitting but used least-squares fitting of each surface patch, recursively subdivid-
ing each patch until the approximation is within desired tolerances. Tobor et al. [14, 15]
also applied recursive subdivision and partition-of-unity blending to implicit surface
fitting, using an approach closer to that proposed by Wendland.

Shen et al. [17] use a similar method to blend local embedding functions. In their
case, they begin with a potentially unorganized polygonal model and define a local em-
bedding function on a per-polygon basis using the polygon normals to avoid the need
for additional normal constraint points. These local embedding functions are blended
together using moving least squares, which allows them to perform either exact inter-
polation or approximation depending on the choice of weighting function. (They point



out that their technique differs from the MLS approaches in [25, 28] and related work,
so they call theirs an implicit MLS approach.)

Key to partition-of-unity or moving-least-squares methods is the use of a compactly
supported weighting function to blend separate patches or the effects of individual
points in a neighborhood. We demonstrate a new method for creating and blending
interpolations for separate patches that uses compactly supported RBFs to interpolate
the patches and, due to their compactly supported nature, does not require the use of a
separate explicit blending function.

3 Method

Building a single embedding function that interpolates all the points of a very large data
set is not feasible. Therefore, we take a coarse-to-fine, top-down approach to partition
the problem into smaller, tractable embedding functions. Our method builds a large-
scale embedding function, and then successively refines it with smaller-scale incremen-
tal functions. The two main components of our method are selecting the points for each
node in the hierarchy and creating phantom constraints to allow overlapping embedding
functions. Using phantom constraints to clamp each embedding function allows us to
combine them simply by addition rather than requiring a blending function.

3.1 Building a Hierarchy

To build a hierarchy we use an octree to span the input points, which is traversed from
the top down. Points are first selected for the root, producing an embedding function for
a base model. Then points for the each of the children of the root are selected, adding
detail at a finer resolution. After solving the refining embedding functions for the eight
children, we proceed to the grandchildren, and so on. When building any given node,
the functions for the nodes above it have been solved already.

Selecting Points For a Node Points in a node’s octant are selected based on a random
Poisson-disk distribution [33]. However, the traditional Poisson-disk distribution, where
there is a minimum Euclidean distance between any two points, tends to undersample
regions of high curvature. We would like to allow sample points to be closer together in
high curvature regions.

Comparing the normal directions of nearby points is an efficient estimate of local
curvature. A region with points that have disparate normals requires a higher sampling
rate. To achieve adaptive sampling we use a modified distance function based on the
points’ normals. If two points have identical normals, the distance between them is the
same as the Euclidean distance. However, if their normals differ we would like them to
appear to be farther apart. The net effect is to place samples closer together.

We use a modified distance function that scales the Euclidean distance by a quadratic
function of the angle θ between the normal vectors:

f (θ) =
1
2

cos(θ)2− 7
2

cos(θ)+4 (3)



This function is 1 when the angle is 0, i.e., the two normals are aligned. It is 4 when the
normals are perpendicular and 8 when the normals are directly opposed. E.g, f (0) = 1,
f (π

2 ) = 4 and f (π) = 8.
So the net distance function is

dist(x1,x2,θ) = ‖x1−x2‖
(

1
2 cos(θ)2− 7

2 cos(θ)+4
)

(4)

where x1 and x2 are the two points and θ is angle between their normals.
Another possible distance function would be the geodesic distance on a surface,

if a surface mesh were available. Using the geodesic distance would help problems
that occurs when surfaces are very close together but not directly connected. However
in small regions of high curvature the geodesic distance would still not place enough
samples and is expensive to compute.

Selecting Points For the Root Selecting points for the root embedding function is
especially important because error in the root propagates throughout the hierarchy. The
more error there is in a parent node, the more “energy” required at a child node to bend
the embedding function to fit. Since the root node affects all other nodes, we are more
particular in selecting its points.

At the root node, in addition to the modified Poisson-disk distribution mentioned
earlier, we attempt to select points that are “representative” of a local region. The idea
is to pick points that capture the larger-scale shape of a region, pushing smaller scale
detail or noise to nodes lower in the hierarchy.

For the root node candidate points are screened by comparing its normal direction
with the normals of points around it. If the point’s normal is too disparate from those
of its neighbors, it is not selected. Specifically the average dot product of a candidate
point’s normal with the normals around it is computed. If it is below a specific threshold
(0.1), the point is not selected.

Figure 1 shows a two-level hierarchy of RBFs of the Stanford bunny. The hierarchy
consists of a root RBF and eight children. The constraints are colored by node. The
root’s constraints are dark blue and slightly larger.

Embedding Function For a Node As mentioned previously, the hierarchy is built
from the top down. Once points have been selected for a node, interior, surface, and
exterior constraints are placed for each point. The embedding function also requires a
level set value for each constraint and a radius of support for the compact RBF.

The root embedding function should produce the correct results at the locations of
the root’s constraints. Therefore the constraint values are determined solely by the type
of constraint. By default at a surface constraint the function should be 0, at an interior
constraint it is should be 1 and at an exterior constraint it should be −1.

Using the notation of Eqs. 1 and 2, we can write the root embedding function f0
defined by the set of root constraints P0 = {(ci,hi)} using root-level RBF φ0(r) as fol-
lows:

f0(x) = ∑
(ci,hi)∈P0

d0i φ0(‖x− ci‖) (5)



where the root-level weights d0i are determined by solving the system of equations

∀ci ∈ P0 : f0(ci) = hi (6)

The embedding function of a child node is an increment that corrects the parent
function at the location of the child node’s constraints. For example at a child node’s
surface constraint the net function should to evaluate to 0. However, the parent function
evaluates to some value α . Therefore the child’s function should evaluate to −α to
correct the error. Thus at each child constraint location, the hierarchy of embedding
functions above the child node is evaluated, and a value is given to the child constraint
that corrects the result of the nodes above it.

Thus, we may write a single child level’s embedding function f1 defined by the
child node’s constraints P1 = {(ci,hi)} and child-level RBF φ1(r), along with the parent
node’s constraints P0 and embedding function f0, as follows:

f1(x) = ∑
(ci,hi)∈P0∪P1

d1i φ1(‖x− ci‖) (7)

where the child-level weights d1i are determined by solving the system of equations

∀ci ∈ P0∪P1 : f1(ci) = hi− f0(ci) (8)

Note that each level k of the hierarchy uses its own RBF φk(r) and weights dki.
Since Eq. 6 already holds for the root nodes, the root embedding function f0 al-

ready evaluates correctly at the root nodes and no correction is required by the child
embedding function:

∀ci ∈ P0 : f1(ci) = 0 (9)

This process may be continued to additional levels of the hierarchy.
Note that this formulation includes only a single node at each level of the hierarchy.

Solving for and combining embedding functions for multiple nodes at each level of the
hierarchy is addressed in Section 3.2.

Once all the constraint values for a node have been determined, the radius of support
for the compact RBF for that node must be determined. We attempt to keep the same
number of points per node, and nodes at different levels in the hierarchy cover different
sized regions. Naturally different-level nodes should have compact RBFs with different
radii. In our approach the user selects the radius for the root, and each descendant is
given a radius proportional to that root radius and to its own size.

Typically compact RBFs are used for the embedding functions of all of the nodes
in the hierarchy, but using only compactly supported RBFs have the problem of the
function being undefined in some regions. Any location that is outside of all constraints’
radii of support will not have a defined embedding function. Therefore we also allow
the option of using a thin plate spline RBF for the root node (see Figure 3), eliminating
the problem. The downside is that it is much more expensive to solve and evaluate,
since all the constraints affect each other and all other points in space [5]. But since
the embedding function for the root node uses only a limited subset of points, it is still
practical even for otherwise large models.



3.2 Phantom Constraints

Managing overlapping embedding functions is a common problem that occurs when
attempting to partition a point set. To interpolate all the points in a data set, we must
guarantee that the combination of all embedding functions that impinge on a point pro-
duces the exact value we require. Our task is simplified by the compact RBF’s limited
extent. Therefore at any given point only relatively few embedding functions need to be
combined and evaluated.

Our approach is to place phantom constraints in a given node to clamp its em-
bedding function. Phantom constraints are placed in regions where nodes overlap and
where we want to suppress the influence of the node’s embedding function. In this way,
phantom constraints serve much the same purpose as the blending function in partition-
of-unity approaches but without explicit blending during evaluation of the implicit sur-
face’s embedding function. The locations for phantom constraints fall into two cate-
gories: locations that have been inherited from regular constraints in ancestral nodes,
and locations from regular constraints in adjacent sibling nodes. Using a top-down ap-
proach means constraint locations from descendant nodes can be ignored.

A child node’s embedding function is an incremental change applied to the sum
of its ancestor embedding functions as mentioned in Section 3.1. For our purposes an
ancestor node is any node above a given node that overlaps with the node, not just direct
ancestors. Since a child embedding function is an increment to the functions above it,
a regular constraint of the child is given a value that corrects the summed ancestor
functions. In addition to moving the net embedding function towards a child’s regular
constraint locations, we need to ensure that the child’s embedding function does not
incorrectly move the net function at all its ancestors’ constraint locations. Therefore,
phantom constraints that have values of 0 are placed in the child RBF at all ancestor
constraint locations within the bounds of the child.

Similarly a node should not be incorrectly affected by neighboring sibling nodes.
Therefore, the regular constraints of any neighboring sibling that might affect a node
become corresponding phantom constraints for the node. These neighboring regular
constraints are any that fall within the bounds of the node’s regular constraints aug-
mented by its radius of support.

Extending the notation of Eqs. 5–9, we define Plk = {(ci,hi)} as the set of constraints
for node k of level l. We also define P̂lk = {(ci,hi)} as the set of phantom constraints
relevant to this node and the function f̂lk as the sum of all other embedding functions
relevant to this node (i.e., those higher up in the hierarchy whose support-expanded re-
gions overlap this node’s support-expanded region). We may thus write the embedding
function for this child node in terms of these constraints and the node’s RBF φlk(r) as

flk(x) = ∑
(ci,hi)∈Plk∪P̂lk

dlki φlk(‖x− ci‖) (10)

where the child node’s weights dlki are determined by solving the system of equations

∀ci ∈ Plk ∪ P̂lk : flk(ci) = hi− f̂lk(ci) (11)



a b

Fig. 2. Phantom constraints. a) the constraints of two neighboring child nodes of the bunny. The
octahedra are regular constraints, and the crosses are phantom constraints. b) the effects of phan-
tom constraints on the embedding function. The left side of the bunny does not have phantom
constraints from neighboring nodes, while the right side does. The color shows the distance error
between the embedding function and the original surface.

a b c d
Fig. 3. Slices through the embedding functions. a) a compact RBF root. b) a two level hierarchy,
with a compact root. c) a thin plate spline root. d) a two level hierarchy, with a thin plate spline
root. The purple is where the compact RBF is undefined.

Again, this node’s embedding function provides incremental refinement only and does
not change the result at the phantom constraints from other nodes:

∀ci ∈ P̂lk : flk(ci) = 0 (12)

Figure 2a is two overlapping child nodes of the bunny. The octahedra represent
regular constraints, while the crosses represent phantom constraints. The phantom con-
straints contained with the bounds of a node’s octant have been inherited from the root
node, while those outside the octant come from neighboring sibling nodes.

Figure 2b illustrates the error that can occur from overlapping embedding functions
that do not have phantom constraints. On the left side of the bunny there are no phantom
constraints from neighboring octants. On the right side there are phantom constraints.
The surface is colored by the distance error between the embedding function and the
original surface mesh. Clearly there is much more error on the left side, particularly
where octants abut. Also the error bleeds into the right side of the bunny because the
functions on the left are not evaluating to 0 to the right.



Figure 3 shows slices through four embedding function of the bunny. Images 3a and
3b use a compact RBF for the root node, while 3c and 3d use a thin plate spline at the
root. In the left pair the purple is a region where the compact RBF is not defined. Images
3a and 3c are slices through the embedding functions of just the root nodes. The images
that slice through two level hierarchies (3b and 3d) clearly show sharper boundaries and
more detail. For instance, the bottoms of the bunny are less rounded.

Adding phantom constraints outside of a given node’s bounds expands the region
of space where the node’s RBF must be evaluated. This region is the union of spheres
centered at each constraint where all the spheres have a radius that is the compact RBF’s
radius of support. However, this expansion can be nullified by only defining the embed-
ding function in the original region defined by the regular constraints. For any location
that has only phantom constraints within the radius, we make the embedding function
return 0, since the purpose of phantom constraints is to suppress the function.

4 Results

Fig. 4. CT scan of a skull,
by GE. On top are con-
straints of the leaf nodes of
the skull’s implicit hierar-
chy, and below is an iso-
surface extracted from the
embedding function.

To demonstrate the efficacy of our method, we applied
it to three large data sets: a skull, a dragon and a statue.
The hierarchies of these models are described in Section
4.1. From these data sets Section 4.2 analyzes the statis-
tics and error characteristics of our method. Section 4.3
provides some implementation details.

4.1 Examples

The first example data set is a CT scan of a dry skull,
provided by GE Medical Research. From the original
571,794 vertices we built an implicit hierarchy of 1.8
million constraints in a octree of height 3. In all our
examples we used surface and exterior constraints. Fig-
ure 4 shows the constraints of the leaf nodes above and
an iso-surface extracted from our embedding function
below. Only the leaf node constraints are displayed for
visual clarity. Apparently empty patches occur because
those leaf nodes have few constraints. In those cases
most of the constraints are higher in the hierarchy.

The second data set is the Asian Dragon from Stan-
ford’s 3D Scanning Repository. Derived from the data
set’s 3.6 million vertices, our implicit model has 9.1
million constraints in a 5 level octree. Figure 5 shows
the constraints of the leaf nodes on the left and an ex-
tracted iso-surface on the right. Figure 6 shows surfaces
extracted from each of the levels of the implicit hierar-
chy. The upper left image is of the original mesh. The
upper middle image is of the root node. The upper right



Fig. 5. Stanford’s Asian Dragon. On the left are the constraints of the leaf nodes of the implicit
hierarchy, and on the right is an iso-surface extracted from the embedding function.

Fig. 6. Surfaces from levels of the dragon’s hierarchy. In the upper left is the head of the original
dragon. From left to right and top to bottom are surfaces extracted from the 5 hierarchy levels.

image and lower three images are of each successive level. The lower three images
are essentially indistinguishable from the original. The root node image (upper middle)
shows spurious surfaces shooting off form the horns. These problems are typical of
compact RBFs in undersampled regions of higher curvature.

The third data set is the Thai Statue, also from Stanford’s 3D Scanning Repository.
The original model consists of 5 million vertices. To those we added 426,245 on the
bottom of the statue, which was not scanned. Our implicit model has 17.5 million con-
straints in a 5 level octree. Figure 7 shows the five levels in the hierarchy, starting with
the root on the left, and an iso-surface extracted from the embedding function.



Fig. 7. Stanford’s Thai statue. The 5 levels of the hierarchy of constraints and an extracted iso-
surface. The hierarchy contains 17.5 million constraints.

4.2 Statistics

Table 1 shows statistics for the three data sets. The upper section of the table shows
statistics for each entire model, and the middle section shows statistical averages per
implicit evaluation. The bottom section shows the error in each implicit surface. To
compute the statistics in the middle and bottom sections, the embedding function was
evaluated at every surface constraint location in each data set.

The implicit error of a constraint is the unsigned difference between the value a
constraint should have and the value returned by the embedding function. By default,
surface constraints should have a value of 0.

The distance error is the distance between a surface constraint’s location and a root
(zero) of the embedding function. The root was found by searching the embedding
function along the constraint’s normal direction. The data sets had extents of 374.6,
201.3, 395.9 along their longest axes respectively, and the exterior constraints were
offset by a distance of 10−4 in all cases. Values of 0 for surface constraints and −1
for exterior constraints of the embedding function results in gradients on the order of
105. Thus one would expect implicit errors on the order of 105 times greater than the
distance errors, and the statistics bear this expectation out.

In our examples adding phantom constraints increases the number of constraints
in the data sets by an average of 51.7% so that phantom constraints make up 31.6%
of the constraints. However, since the phantom constraints tend to occur towards the
bottom of the hierarchy, i.e. in the nodes with smaller extents, the average number of
phantom constraints encountered per function evaluation is lower. In all they represent
only 12.7% of the constraints when evaluating the embedding function.

In addition to measuring the error in the implicit function, we measured the distance
error between the original meshes and iso-surfaces extracted from different levels of the
implicit hierarchy. Figure 8 shows the results in a log chart. A stochastic symmetric dif-
ference method was used to determine the average distance between each extracted iso-
surface and its original surface, in units of the original surface. The curves demonstrate
how the addition of levels in hierarchy improves the accuracy of the iso-surface.



CT skull Asian dragon Thai statue

Hierarchy statistics

vertices 571,794 3,609,455 4,999,996
regular constraints 1,143,586 7,218,836 10,852,316
phantom constraints 661,619 1,867,784 6,632,801
total constraints 1,825,205 9,086,620 17,485,117
tree nodes 63 744 799
tree height 3 5 5
build time (minutes) 7.10 38.13 127.35

Averages per evaluation
regular constraints 207.66 630.31 961.77
phantom constraints 18.98 89.75 202.00
number of nodes 3.34 5.84 6.59

Error

avg. implicit error 7.400×10−08 2.543×10−07 1.498×10−06

max. implicit error 4.176×10−05 1.651×10−05 1.495×10−04

avg. distance error 9.189×10−13 7.239×10−12 2.123×10−10

max. distance error 2.205×10−08 2.281×10−09 2.270×10−08

Table 1. Statistics for the hierarchical implicit surfaces for the three example data sets.

Fig. 8. Error statistics for iso-surfaces extracted from different levels of the implicit hierarchy.
Each iso-surface was measured against the original meshes.

4.3 Implementation

The example implicit hierarchies were built on a SGI Altix system with four 1.4 GHz
Itanium 2 processors and 8 GB of main memory. The most time consuming sections
of code, solving each node’s sparse matrix and computing all the constraints’ values,
were parallelized. Computing a constraint’s value is required for non-root nodes, since
its value depends on the embedding functions above it in the hierarchy. The matrices
were solved using the LDL solver in SGI’s Scientific Computing Software Library.

5 Conclusions

We have developed a technique for generating implicit surfaces from large point sets.
This method employs a hierarchical spatial partitioning that imposes a successive se-
ries of embedding functions that are constrained so that when they are added to one
another, they interpolate the point set. Our approach begins with the careful selection
of a representative subset of the point set from which an interpolating implicit surface
that provides a basic model can be created using linear combinations of compactly sup-
ported radial basis functions. This base model interpolates the core subset of data points



and serves as the foundation for the coarse-to-fine hierarchy. The data space is recur-
sively divided into an octree with additional data points selected, and more detailed
embedding functions are derived for each child octant that, when added to the base
model, accurately interpolate the more complete, higher resolution model. Neighbor-
ing spatial partitions are supplemented with overlapping points, phantom constraints,
that assure smooth transitions between adjoining embedding functions. No additional
blending functions are required because our compactly supported radial basis functions
have a limited radius of influence, imposing a predictable margin between partitions and
gradual diminishing of effect between them. Furthermore, our method elegantly handles
irregularly sampled data and hole filling because of its multiresolutional approach.

Future work in this area includes exploring new criteria for selecting representa-
tive points for the base model and the detailed, higher resolution embedding functions.
Improved measurements for surface curvature will lead to efficient computation of im-
plicit surfaces. New measures of the saliency of critical elements of the point set may
include the detection of higher order features derived from other differential geometric
measurements including parabolic curves denoting inflections in Gaussian curvature. In
the future, even larger models may be accommodated by developing out-of-core meth-
ods for performing the necessary linear algebraic computations. Adjustable, adaptive
spatial partitioning may also help to process very large models.

References

1. Savchenko, V.V., Pasko, A.A., Okunev, O.G., Kunii, T.L.: Function representation of solids
reconstructed from scattered surface points and contours. Computer Graphics Forum 14(4)
(1995) 181–188

2. Turk, G., O’Brien, J.F.: Variational implicit surfaces. Technical Report GIT-GVU-99-15,
Georgia Institute of Technology (1998)

3. Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. Computer
Graphics 33(Annual Conference Series) (1999) 335–342

4. Yngve, G., Turk, G.: Creating smooth implicit surfaces from polygonal meshes. Technical
Report GIT-GVU-99-42, Georgia Institute of Technology (1999)

5. Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating implicit
surfaces from scattered surface data using compactly supported radial basis functions. In:
Shape Modeling International 2001, Genoa, Italy (2001) 89–98

6. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans,
T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Pro-
ceedings of SIGGRAPH 2001. (2001) 67–76

7. Dinh, H.Q., Turk, G., Slabaugh, G.: Reconstructing surfaces using anisotropic basis func-
tions. In: Proc. Eighth International Conference on Computer Vision (ICCV 2001). (2001)

8. Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Transactions
on Graphics 21(4) (2002) 855–873

9. Dinh, H., Turk, G., Slabaugh, G.: Reconstructing surfaces by volumetric regularization using
radial basis functions. IEEE Trans. on Pattern Analysis and Machine Intelligence (2002)

10. Wendland, H.: Fast evaluation of radial basis functions: Methods based on partition of
unity. In Chui, C.K., Schumaker, L.L., Stöckler, J., eds.: Approximation Theory X: Wavelets,
Splines, and Applications, Vanderbilt University Press, Nashville, TN (2002) 472–483

11. Kojekine, N., Hagiwara, I., Savchenko, V.: Software tools using CSRBFs for processing
scattered data. Computers & Graphics 27(2) (2003) 311–319



12. Ohtake, Y., Belyaev, A., Seidel, H.: A multi-scale approach to 3d scattered data interpolation
with compactly supported basis functions. In: Shape Modeling International 2003. (2003)

13. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.: Multi-level partition of unity im-
plicits. ACM TOG (Proc. SIGGRAPH 2003) 22(3) (2003) 463–470

14. Tobor, I., Reuter, P., Schlick, C.: Efficient reconstruction of large scattered geometric datasets
using the partition of unity and radial basis functions. In: WSCG (Winter School of Computer
Graphics). (2004)

15. Tobor, I., Reuter, P., Schlick, C.: Multiresolution reconstruction of implicit surfaces with
attributes from large unorganized point sets. In: Proceedings of Shape Modeling International
(SMI 2004). (2004) 19–30

16. Ohtake, Y., Belyaev, A., Seidel, H.P.: 3d scattered data approximation with adaptive com-
pactly supported radial basis functions. In: Shape Modeling International 2004. (2004)

17. Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces
from polygon soup. In: Proceedings of ACM SIGGRAPH 2004, ACM Press (2004) 896–904

18. Nielson, G.M.: Radial hermite operators for scattered point cloud data with normal vectors
and applications to implicitizing polygon mesh surfaces for generalized CSG operations and
smoothing. In: 15th IEEE Visualization 2004 (VIS’04). (2004) 203–210

19. Duchon, J.: Sur l’erruer d’interpolation des fonctions de plusieurs variables par les dm

splines. R.A.I.R.O Analyse numerique 12(4) (1978) 325–334
20. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial func-

tions of minimal degree. AICM 4 (1995) 389–396
21. Morse, B., Liu, W., Otis, L.: Empirical analysis of computational and accuracy tradeoffs

using compactly supported radial basis functions for surface reconstruction. In: Proceedings
Shape Modeling International (SMI’04). (2004) 358–361

22. Muraki, S.: Volumetric shape description of range data using “blobby model”. In: Pro-
ceedings of ACM SIGGRAPH 1991. Computer Graphics Proceedings, Annual Conference
Series, ACM Press / ACM SIGGRAPH (1991) 227–235

23. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algo-
rithm. In: Proceedings of SIGGRAPH 98. Volume 32. (1998) 415–421

24. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction
from unorganized points. In: Proceedings of SIGGRAPH 92. Volume 26. (1992) 71–78

25. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces.
IEEE Visualization 2001 (2001) 21–28

26. Amenta, N., Kil, Y.J.: Defining point-set surfaces. ACM Trans. on Graphics 23(3) (2004)
264–270

27. Fleishman, S., Alexa, M., Cohen-Or, D., Silva, C.T.: Progressive point set surfaces. ACM
Transactions on Graphics 22 (2003)

28. Levin, D.: Mesh-independent surface interpolation. In Brunnet, G., Hamann, B., Mueller, K.,
Linsen, L., eds.: Geometric Modeling for Scientific Visualization. Springer-Verlag (2003)

29. Morse, B., Liu, W., Yoo, T., Subramanian, K.R.: Active contours using a constraint-based
implicit representation. In: Proc. Computer Vision and Pattern Recognition (CVPR). (2005)

30. Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions. Comput. Math.
Appl. 24 (1992) 7–19

31. Floater, M., Iske, A.: Multistep scattered data interpolation using compactly supported radial
basis functions. Journal of Comp. Appl. Math. 73 (1996) 65–78

32. Iske, A., Levesley, J.: Multilevel scattered data approximation by adaptive domain decom-
position. In: Numerical Algorithms. Volume 39. (2005) 187–198

33. Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1) (1986)
51–72


